
Natural 
Language 
Processing
Yue Zhang
Westlake University



Chapter 10

Predicting Tree Structures

2



3

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



4

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



5

Generative Constituent Parsing

• Input: Here are the net contributions of the experts.

• Output:
S

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here



6

Generative Constituent Parsing

• Input: Here are the net contributions of the experts.

• Output: A constituent tree represented by a bracketed structure.

(S
(ADVP (RB “Here”))
(VP (VBP “are”))
(NP 
(NP (DT “the”) (JJ “net”) (NNS “contributions”)))
(PP (IN “of”)(NP (DT “the”) (NNS “experts”))))

(. “.”))



7

Generative Constituent Parsing

• Constituent tree binarization

• Necessary for some common algorithms (e.g. CKY;  shift-reduce)

• Modes of binarization

• Left-binarization

• Right-binarization

• Head-binarization



8

Generative Constituent Parsing

• Constituent tree binarization

• Left-binarization

• Right-binarization

• Head-binarization

Left-binarization

S

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

Original tree



9

Generative Constituent Parsing

• Constituent tree binarization

• Left-binarization

• Right-binarization

• Head-binarization
S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

S

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

Original tree Right-binarization



10

Generative Constituent Parsing

• Constituent tree binarization

• Left-binarization

• Right-binarization

• Head-binarization

Head-binarization

S

S*

.

.

S*

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

S

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

Original tree



11

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

12

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

13

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

14

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

15

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

16

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

17

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

18

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

19

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

20

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

21

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

22

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

23

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

24

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

25

Probabilistic Context Free Grammar

• Derivation



S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

26

Probabilistic Context Free Grammar

• Derivation



27

Probabilistic Context Free Grammar

• Context Free Grammars (CFG)

Formally, a CFG is a 4-tuple:  <N,Σ,R,S>.

• N: the set of non-terminals (i.e. A,B,C,…)

• Σ:  the set of terminals (i.e. α,β,γ,…)

• R: the set of production rules (i.e. A->BC, A->γ,…)

• S:  the start symbol



28

Probabilistic Context Free Grammar

• Derivation

A sequence of rule applications that transforms a non-

terminal node into a string is called a derivation. 

S

S*

S*

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

S → ADVP S∗, ADVP → 𝑅𝐵, 𝑆∗ →

𝑆∗. , 𝑆∗ → 𝑉𝑃 𝑁𝑃, 𝑉𝑃 → 𝑉𝐵𝑃,𝑁𝑃 →

𝑁𝑃 𝑃𝑃,𝑁𝑃 → 𝐷𝑇 𝑁𝑃∗, 𝑁𝑃∗ →

𝐽𝐽 𝑁𝑁𝑆, 𝑃𝑃 → 𝐼𝑁 𝑁𝑃,𝑁𝑃 → 𝐷𝑇 𝑁𝑁𝑆

𝑅𝐵 → 𝐻𝑒𝑟𝑒, 𝑉𝐵𝑃 → 𝑎𝑟𝑒, 𝐷𝑇 →

𝑡ℎ𝑒, 𝐽𝐽 → 𝑛𝑒𝑡, 𝑁𝑁𝑆 → 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠,

𝐼𝑁 → 𝑜𝑓,𝑁𝑁𝑆 → 𝑒𝑥𝑝𝑒𝑟𝑡𝑠



29

Probabilistic Context Free  Grammar

• Probabilistic Context Free Grammars (PCFG)

• A probabilistic context-free grammar (PCFG) is a CFG 

augmented with rule probabilities.

• The probability of a grammar rule (A→γ) is denoted as:

P(A→ γ) 



30

Probabilistic Context Free  Grammar

• The probability of a one-step derivation

𝑃 𝛼
!→#

𝛽 = 𝑃 𝐴 → 𝛾 = 𝑃(𝛾|𝐴)

• The probability of a multi-step derivation

𝑃 𝛼
!!→#! 𝛽$

!"→#" 𝛽% …
!#→## 𝛽& =,

'($

&

𝑃(𝐴' → 𝛾')



31

Probabilistic Context Free Grammar

• P(S => Here are the net contributions of the experts .) is:

P S → ADVP S∗ P(ADVP → 𝑅𝐵)P(𝑆∗

→ 𝑆∗. )P(𝑆∗ → 𝑉𝑃 𝑁𝑃)P(𝑉𝑃 → 𝑉𝐵𝑃)P(𝑁𝑃

→ 𝑁𝑃 𝑃𝑃)P(𝑁𝑃 → 𝐷𝑇 𝑁𝑃∗)P(𝑁𝑃∗

→ 𝐽𝐽 𝑁𝑁𝑆)P(𝑃𝑃 → 𝐼𝑁 𝑁𝑃)P(𝑁𝑃

→ 𝐷𝑇 𝑁𝑁𝑆)P(𝑅𝐵 → 𝐻𝑒𝑟𝑒)P(𝑉𝐵𝑃

→ 𝑎𝑟𝑒)P(𝐷𝑇 → 𝑡ℎ𝑒, 𝐽𝐽 → 𝑛𝑒𝑡)P(𝑁𝑁𝑆

→ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠)P(𝐼𝑁 → 𝑜𝑓)P(𝑁𝑁𝑆

→ 𝑒𝑥𝑝𝑒𝑟𝑡𝑠)

S

S*

.

.

S*

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here



32

Probabilistic Context Free 
Grammar

• The probability of a subtree 𝑇(𝑏, 𝑒, 𝑐)

• 𝑏 and e represent the start and end index, 

• 𝑐 is the constituent label 

𝑃 𝑇 𝑏, 𝑒, 𝑐 = ∏L∈N(O,P,Q)𝑃(𝑟)

• Given 𝑐->𝑐$𝑐%，

𝑃 𝑇 𝑏, 𝑒, 𝑐 = 𝑃 𝑇 𝑏, 𝑘, 𝑐$ 𝑃 𝑇 𝑘 + 1, 𝑒, 𝑐% 𝑃(𝑐−>𝑐$𝑐%)

S

S*

.

.

S*

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

𝑇(3,5, 𝑁𝑃)



33

Probabilistic Context Free  Grammar

• Training PCFG 𝐷 = 𝑊', 𝑇' |'($T

• Given a training corpus, each parameter can be estimated using:

𝑃 𝛾 𝐴 = 𝑃(𝐴 → 𝛾) =
)𝑐𝑜𝑢𝑛𝑡(𝐴 → 𝛾

)𝑐𝑜𝑢𝑛𝑡(𝐴

=
=∑'($T 𝑐 𝑜𝑢𝑛𝑡(𝐴 → 𝛾, 𝑇'

?'($
T )𝑐𝑜𝑢𝑛𝑡(𝐴, 𝑇'



34

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



35

CKY Decoding

• Given a sentence 𝑊$:V = 𝑤$𝑤%…𝑤V, the most probable tree is 

built bottom-up.

• The subtree over the span 𝑤'𝑤'W$…𝑤'WXY$ with a constituent 

label 𝑐 is denoted as: A𝑇(𝑖, 𝑖 + 𝑠 − 1, 𝑐)

• The most probable derivation must consist of the most 

probable sub derivations. 

Z
𝑠𝑐𝑜𝑟𝑒( [𝑇(𝑖, 𝑖 + 𝑠 − 1, 𝑐)) = max ]#!,#"∈&,'∈[)*+,…,)*-.+ (𝑠𝑐𝑜𝑟𝑒( [𝑇(𝑖, 𝑗 − 1, 𝑐+)) +
𝑠𝑐𝑜𝑟𝑒( [𝑇(𝑗, 𝑖 + 𝑠 − 1, 𝑐/) )+log𝑃(𝑐 → 𝑐+𝑐/)



36

CKY Decoding



37

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



38

Evaluating Constituent Parser Outputs 

S

S*

.

.

S*

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

• Evaluating spans (𝑏, 𝑒, 𝑐) 1, 1, 𝑅𝐵 (1, 1, 𝐴𝐷𝑉𝑃)(3, 5, 𝑁𝑃)

S

.

.

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here



39

Evaluating Constituent Parser Outputs 

• Constituent (b: begin, e: end, c: constituent label)

• Precision

• the percentage of constituents in the output set that are correct 

• Recall

• the percentage of gold-standard constituents that are identified in 

the parser output 

• F-score

• 2PR/(P+R)

• Labeled (b, e, c), unlabeled (b, e).



40

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



41

Calculating Marginal Probabilities 

• Given the sentence 𝑊$:V = 𝑤$𝑤%…𝑤V , the marginal probability for the span 

𝑤'𝑤'W$…𝑤g with a constituent label c is：

𝑃 𝑆𝑝 𝑖, 𝑗, 𝑐 𝑊$:V ∝ 𝑃(𝑆𝑝 𝑖, 𝑗, 𝑐 ,𝑊$:V)

• In particular,

𝑃(𝑆𝑝(𝑖, 𝑗, 𝑐),𝑊$:V) = 𝑃(𝑆 ⇒
∗
𝑤$𝑤%…𝑤'Y$𝑐𝑤gW$𝑤gW%…𝑤V ⇒

∗
𝑊$:V

= 𝑃 𝑆 ⇒
∗
𝑤$𝑤%…𝑤'Y$𝑐𝑤gW$𝑤gW%…𝑤V 𝑃 𝑐 ⇒

∗
𝑤'𝑤'W$…𝑤g

(independence assumption)

= ∑
LijPX∈ kPV(l!:% m [Q⇒

∗
p'…p(])

∏L∈LijPX𝑃(𝑟) ⋅ ∑
LijPX∈kPV p':( Q

∏L∈LijPX𝑃(𝑟)



42

Calculating Marginal Probabilities 

• inside probability：

𝑃(𝑐 ⇒
∗
𝑤"𝑤"#$…𝑤%) = ∑ &'()*+∈ -*.(0!:#(1)

𝑃 (𝑐
'()*+

𝑤"𝑤"#$…𝑤%)

= J &'()*+∈ -*.(0!:#(1)
∏'∈'()*+𝑃 (𝑟)

• outside probability:

L𝑃(𝑆 ⇒
∗
𝑤$𝑤3…𝑤"4$𝑐𝑤%#$𝑤%#3…𝑤.

= ∑
5'()*+∈ -*.(6$:%(7)[1⇒

∗
6!:#]

𝑃 (𝑆
'()*+

𝑤$𝑤3…𝑤"4$𝑐𝑤%#$𝑤%#3…𝑤.)

=J 5'()*+∈ -*.(6$:%(7)[;⇒
∗
6!:#]

∏'∈'()*+𝑃 (𝑟)



43

Calculating Marginal Probabilities 

• Both the inside probability and the outside probability can be 

calculated in polynomial time using dynamic programming. 

• Assume our grammar conforms to CNF, and use inside (𝑖, 𝑗, 𝑐) to 

denote 𝑃(𝑐 ⇒
∗
𝑤":$), then we have:
)𝑖𝑛𝑠𝑖𝑑𝑒(𝑖, 𝑗, 𝑐

= ∑<∈ "#$ ,…,% ∑1$,1'∈; 𝑖𝑛𝑠𝑖𝑑𝑒 𝑖, 𝑘 − 1, 𝑐$ ×𝑖𝑛𝑠𝑖𝑑𝑒 𝑘, 𝑗, 𝑐3 ×𝑃 𝑐 → 𝑐$𝑐3

)𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑖, 𝑗, 𝑐

= t
0∈ '*+,…,1

t
##,#"∈&

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝑖, 𝑘, 𝑐2)×𝑖𝑛𝑠𝑖𝑑𝑒(𝑗 + 1, 𝑘, 𝑐/)×𝑃(𝑐2 → 𝑐𝑐/)

+ t
0∈ +,…,).+

t
##,#"∈&

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝑘, 𝑗, 𝑐2)×𝑖𝑛𝑠𝑖𝑑𝑒(𝑘, 𝑖 − 1, 𝑐/)×𝑃(𝑐2 → 𝑐/𝑐)



44

Inside algorithm



45

Outside algorithm



46

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



47

More Features for Constituent Parsing

• The feature set of PCFG is rather simple for disambiguation.

• Methods to integrate richer features:

(1). Extend the generative story of PCFGs.

(2). Use a discriminative model to accommodate overlapping features. 



48

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



49

Lexicalized PCFGs

• Disambiguation

• rule1: VP-->VB NP

• rule2: VP-->VB

If V is a transitive verb, it is difficult to decide which rule is better.

• Solution

Enrich PCFG constituent labels with lexical information.

e.g.                VP[eat] --> VB[eat] NP 

VP[eat] --> VB[eat] NP[pizza]



50

Lexicalized PCFGs

• A head-lexicalized constituent tree

Head-lexicalized version 

S

S*

.

.

S*

NP

PP

NP

NNS

experts

DT

the

IN

of

NP

NP*

NNS

contributions

JJ

net

DT

the

VP

VBP

are

ADVP

RB

Here

S[are]

S*[are]

.[.]

.

S*[are]

NP[contributions]

PP[of]

NP[experts]

NNS[experts]

experts

DT[the]

the

IN[of]

of

NP[contributions]

NP*[contributions]

NNS[contributions]

contributions

JJ[net]

net

DT[the]

the

VP[are]

VBP[are]

are

ADVP[here]

RB[here]

Here

Head-binarization



51

Lexicalized PCFGs

• Estimation using MLE 

𝑃 𝑉𝑃 𝑙𝑖𝑘𝑒 → 𝑉𝐵 𝑙𝑖𝑘𝑒 𝑁𝑃 =
𝑐𝑜𝑢𝑛𝑡 𝑉𝑃 𝑙𝑖𝑘𝑒 → 𝑉𝐵 𝑙𝑖𝑘𝑒 𝑁𝑃

𝑐𝑜𝑢𝑛𝑡(𝑉𝑃[𝑙𝑖𝑘𝑒])

• Advantage: easy to disambiguate

• Disadvantage: sparse

To avoid zero-probability, one can use back-off.



52

Lexicalized PCFGs

• Decoding

• Different with original CKY:

• (1). chart[s][i][c][h]: the probability of the highest scored constituent 

over the text span 𝑤',…𝑤'WXY$
i is the start index, s is the span size, c is the constituent label, 

and h is the head position.

• (2). complexity: O(𝑛w|𝐶|x)



53

CKY algorithm for head 
lexicalized PCFG



54

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



55

Discriminative Linear Models for 
Constituent Parsing 

• Discriminative models map constituent trees for a given 

sentence into feature vectors.

Given a sentence 𝑊$:V and a constituent Tree T , the score is: 

𝑠𝑐𝑜𝑟𝑒 𝑊$:V, 𝑇 = �⃗� ⋅ 𝜙(𝑊$:V, 𝑇)

𝑠𝑐𝑜𝑟𝑒 𝑊$:V, 𝑇 : the global feature vector, 

𝜙 : the model parameter vector.



56

Discriminative Linear Models for 
Constituent Parsing 

• Feature Factorization

• The global feature vector can be factorized into local 

feature components,

• Suppose 𝑇 𝑖, 𝑗, 𝑐 consists of two subtrees 𝑇 𝑖, 𝑘, 𝑐$ and 

𝑇 𝑘 + 1, 𝑗, 𝑐% then

𝜙(𝑊+:1, 𝑇) = t
4∈5

𝜙 (𝑊+:1, 𝑟)

𝑆𝑐𝑜𝑟𝑒(𝑇 𝑖, 𝑗, 𝑐 ) = 𝑆𝑐𝑜𝑟𝑒(𝑇 𝑖, 𝑘, 𝑐$ ) + 𝑆𝑐𝑜𝑟𝑒(𝑘 + 1, 𝑗, 𝑐3) + �⃗�𝜙(𝑊$:., 𝑐 → 𝑐$𝑐3)



57

Discriminative Linear Models for 
Constituent Parsing 

• Find the tree with the highest score by dynamic program.

𝑠𝑐𝑜𝑟𝑒 A𝑇 𝑖, 𝑗, ℎ, 𝑐

= 𝑎𝑟𝑔𝑚𝑎𝑥&∈ ',…,gY$ ,{!∈ ',…,& ,{"∈ &W$,…,g ,Q!,Q"∈|

]

^

𝑠𝑐𝑜𝑟𝑒 A𝑇 𝑖, 𝑘, ℎ$, 𝑐$ + 𝑠𝑐𝑜𝑟𝑒 A𝑇 𝑘 + 1, 𝑗, ℎ%, 𝑐%

+ �⃗� ⋅ 𝜙(𝑊$:V, 𝑐[𝑤{] → 𝑐$[𝑤{!]𝑐%[𝑤{"])



58

Decoding with CKY



59

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



60

Training Log-linear Models for 
Constituent Parsing 
• The conditional probability of T for a sentence is :

𝑃(𝑇|𝑊$:V) =
}~�(�⋅�(l!:%,N)

∑ )*+∈ -.%(0!:%
}~�(�⋅�(l!:%,N+)

• Given the training set D, the training objective is to maximize 

the log-likelihood of D:

�⃗𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥6log𝑃(𝐷)

= 𝑎𝑟𝑔𝑚𝑎𝑥6log�
)

𝑃 (𝑇)|𝑊)) (𝑖. 𝑖. 𝑑. )

= 𝑎𝑟𝑔𝑚𝑎𝑥6t
)

log
Zexp(�⃗� ⋅ 𝜙(𝑊) , 𝑇))

�∑ )5#∈891(;$
exp (�⃗� ⋅ 𝜙(𝑊) , 𝑇2)

= 𝑎𝑟𝑔𝑚𝑎𝑥6�)( �⃗� ⋅ 𝜙(𝑊) , 𝑇)) − log∑ )5#∈891(;$
exp (�⃗� ⋅ 𝜙(𝑊) , 𝑇′)))



61

Training Log-linear Models for 
Constituent Parsing 
• Due to feature factorization, we have 

• If we can calculate the marginal probabilities 𝑃(𝑇�|𝑊'), then 

the expectation of 𝜙(𝑊', 𝑟) over all possible T’ is equivalent to 

the expectation over all possible r given 𝑊' .

t
)4∈891<(;$
𝐸 =5#~?(5#|;$

(𝜙(𝑊) , 𝑟) ⋅ 1(𝑟 ∈ 𝑇2)) =t
)4∈891<(;$
𝐸 )4~?(4|;$ 𝜙(𝑊) , 𝑟)



62

Training Log-linear Models for 
Constituent Parsing 
• Calculating marginal rule probabilities

• Divide the marginal probability into three parts which can be 

calculated by modified CKY algorithm.
𝑃 𝑟 𝑊$:. =

𝐼𝑛𝑠𝑖𝑑𝑒𝑆𝑐𝑜𝑟𝑒(𝑏, 𝑏′ − 1, 𝑐$, ℎ$,𝑊$:.)𝐼𝑛𝑠𝑖𝑑𝑒𝑆𝑐𝑜𝑟𝑒(𝑏′, 𝑒, 𝑐3, ℎ3,𝑊$:.)

𝑂𝑢𝑡𝑠𝑖𝑑𝑒 (𝑏, 𝑒, 𝑐, ℎ,𝑊$:.) Zexp(�⃗� ⋅ 𝜙(𝑊$:., 𝑟)

𝑃(𝑟|𝑊+:1) = t
5∈ 891 ;!:& -.B.4∈5

𝑃 (𝑇|𝑊+:1)

= �5∈ 891(;!:&)-.B.4∈5
∏4#∈5 exp (�⃗� ⋅ 𝜙(𝑊+:1, 𝑟2)



63

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



64

Training Log-linear Models for 
Constituent Parsing 

• Training goal 

For both structured perceptron and SVM models, the 

training goal is to ensure a outside score margin between 

gold-standard outputs and incorrect outputs.



65

Training Log-linear Models for 
Constituent Parsing 

• Given a set of training data 𝐷 = 𝑊', 𝑇' |'($T ,

• The training objective of structured perceptron is to 

minimize：

• The training objective of structured perceptron is to 

minimize:

t
)C+

D

max (0,max =5#∈891(;$
�⃗� ⋅ 𝜙 𝑊) , 𝑇2 − �⃗� ⋅ 𝜙 𝑊) , 𝑇) )

1
2 ||�⃗�||

/ + 𝐶(t
)C+

D

max 0,1 − �⃗� ⋅ 𝜙 𝑊) , 𝑇) +max5#E5$ �⃗� ⋅ 𝜙 𝑊) , 𝑇2 )

𝑤ℎ𝑒𝑟𝑒 𝑇2 ∈ 𝐺𝑒𝑛(𝑤)).



66

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



67

Reranking

• Non-local features 

• useful for disambiguation

• but add time complexity of decoding

• Reranking 

• integrate non-local features

• without additional asymptotic complexity  



68

Reranking

• Steps of reranking 

(1). obtain output candidates from a base parser with local features.

(1.1). obtain a fixed number of k-best candidates

(1.2). obtain a set of candidates that score higher than a threshold 

(2). rescore the set of candidates, considering the score output by base 

model and non-local features.



69

Reranking

• Testing

Input:  the set of sentences 𝐷 = _𝑊', 𝑇𝑆' |'($T

the set of 𝑛'-best candidates 𝑇𝑆' = {𝑇'$, 𝑇'%, … , 𝑇'
V'}

then the score of 𝑇'
g given by the reranker is:

where 𝑓& 𝑊', 𝑇'
g (𝑘 ∈ [1,… ,𝑚]) are non-local features, 

and 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 𝑇'
g is the score given by the base parser.

Z𝑠𝑐𝑜𝑟𝑒(𝑇"
%) = �⃗� ⋅ 𝜙(𝑊", 𝑇"

%

𝜙 𝑊", 𝑇"
% = ⟨𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 𝑇"

% , 𝑓$ 𝑊", 𝑇"
% , 𝑓3 𝑊", 𝑇"

% , … , 𝑓@ 𝑊", 𝑇"
%



70

Reranking

• Training a reranking model using log-likelihood loss 

• Training data: 𝐷 = 𝑊', 𝑇' ∪ 𝑇𝑆' |'($T

• The training objective is:

log𝑃(𝐷) =t
)

log 𝑃(𝑇)|𝑊))

=t
)

( (𝑠𝑐𝑜𝑟𝑒(𝑇))) − log(𝑒 )-#F49(5$ +t
'C+

1$

𝑒 G-#F49(5$
'
))



71

Reranking

• Training a reranking model using log-likelihood loss 

• SGD can be used for optimization, then the local gradient is:

𝜕
𝜕�⃗�

log𝑃(𝑇)|𝑊)) = 𝜙(𝑊) , 𝑇)) − (𝑃 𝑇) 𝑊) ⋅ 𝜙 𝑊) , 𝑇) +t
'C+

1$

𝑃 𝑇)
' 𝑊) ⋅ 𝜙 𝑊) , 𝑇)

')

= (1 − 𝑃(𝑇)|𝑊))) ⋅ 𝜙(𝑊) , 𝑇)) +t
'C+

1$

𝑃 (𝑇)
'|𝑊)) ⋅ 𝜙(𝑊) , 𝑇)

')



72

Reranking

• Training a reranking model using large-margin loss

• The objective function is to minimize the score margin:

• SGD can be used for optimization, then the local gradient is:

=max(0,1 + maxN+∈Nm(�⃗� ⋅ 𝜙(𝑊', 𝑇�)) − �⃗� ⋅ 𝜙(𝑊', 𝑇')



73

Contents
• 10.1 Generative Constituent Parsing

• 10.1.1 Probabilistic Context Free Grammar

• 10.1.2 CKY Decoding

• 10.1.3 Evaluating Constituent Parser Outputs

• 10.1.4 Calculating Marginal Probabilities

• 10.2 More Features for Constituent Parsing

• 10.2.1 Lexicalized PCFGs

• 10.2.2 Discriminative Linear Models for Constituent Parsing

• 10.2.3 Training Log-linear Models for Constituent Parsing

• 10.2.4 Training Large Margin Models for Constituent Parsing

• 10.3 Reranking

• 10.4 Beyond Sequences and Trees



74

Beyond Sequences and Trees

• Common underlying modeling techniques 

• probability chain rule, independency assumption

• Bayes rule

• dynamic programs

• Dynamic programs and feature constraints

• Efficiency 

• Accuracy

• More alternatives to discuss



Summary

75

• Generative constituent parsing, binarization, probabilistic context 

free grammars (PCFGs)

• CKY algorithm, inside-outside algorithm, lexicalized PCFGs

• Log-linear models for discriminative constituent parsing

Large-margin models for discriminative constituent parsing

• Reranking


